Rutgers University: Algebra Written Qualifying Exam January 2009: Day 1 Problem 3 Solution

Exercise. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing 56. (You may quote the Sylow theorems without proof.)

Solution.

Let G be a group of order 56 .

$$
56=2^{3} \cdot 7
$$

By the third Sylow theorem,

$$
\begin{aligned}
& n_{7} \equiv 1 \quad \bmod 7 \quad \text { and } \quad n_{7} \mid 8 \quad \Longrightarrow \quad n_{7}=1 \text { or } 8 \\
& n_{2} \equiv 1 \bmod 2 \quad \text { and } \quad n_{2} \mid 7 \quad \Longrightarrow \quad n_{2}=1 \text { or } 7
\end{aligned}
$$

If G does not have a Sylow p-subgroup that is normal then, by the second Sylow theorem,

$$
n_{7}=8 \quad \text { and } \quad n_{2}=7
$$

If $n_{7}=9, G$ has $8(7-1)=48$ elements of order 7 .
There are $56-48=8$ remaining elements in G
This is a single Sylow 2-subgroup
\Longrightarrow there must be only one Sylow 2-subgroup
\Longrightarrow the Sylow 2 subgroup is normal in G by the second Sylow theorem

