Rutgers University: Algebra Written Qualifying Exam January 2009: Day 1 Problem 3 Solution

Exercise. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing 56. (You may quote the Sylow theorems without proof.)

Solution.			
Let G be a group of order 56.			
$56 = 2^3 \cdot 7$			
By the third Sylow theorem,			
$n_7 \equiv 1 \mod 7$ and	$n_7 \mid 8$	\implies	$n_7 = 1 \text{ or } 8$
$n_2 \equiv 1 \mod 2$ and	$n_2 \mid 7$	\Rightarrow	$n_2 = 1 \text{ or } 7$
If G does not have a Sylow p -subgroup that is normal then, by the second Sylow theorem,			
$n_7 = 8$	and	n_2	= 7
If $n_7 = 9$, G has $8(7 - 1) = 48$ elements of order 7. There are $56 - 48 = 8$ remaining elements in G This is a single Sylow 2-subgroup			
$\implies \text{there must be only one Sylow 2-subgroup} \\ \implies \text{the Sylow 2 subgroup is normal in } G \text{ by the second Sylow theorem}$			